INTRODUCTION

Consider a general optimization problem involving a system
of conservation laws on a deforming domain, with solution U
and optimization parameters p:

MOTIVATION

Design and control of physics-based sys-
tems commonly lead to optimization
problems constrained by Partial Differ-
ential Equations (PDEs)

Many of these problems are inherently
unsteady:

mlmmlze / / f(U, u,t)dS dt

— Static systems without steady-state . subject to
solutions (e.g. flow problems with sep-  © S 815
aration and turbulence)

-V -FU,VU,u) =0

Use high-order spatial and temporal discretizations and fully-
discrete adjoint-based gradients to combat the high cost of
unsteady optimization

— Dynamic systems (e.g. deforming do-
main problems such as flapping flight,

wind turbines, etc) Application to flow-constrained trajectory optimization and

o Unsteady PDFE-constrained optimization energetically optimal flapping motions at constant thrust

HIGH-ORDER NUMERICAL DISCRETIZATION

e Discretize in space with DG-FEM to yield the semi-discrete
system of equations

e Discretize the system of conservation laws domain using a
high-order accurate Arbitrary Lagrangian-Eulerian (ALE)

Discontinuous Galerkin Finite Element Method (DG-FEM)

e Introduce a time-dependent diffeomorphism G between a
fixed reference domain V' and the physical domain v(¢)

ou

ME = r(u, u,t)

e Discretize in time with a Diagonally Implicit Runge-Kutta
(DIRK) scheme to obtain the fully-discrete equations
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e Transform state variables according to Ux = gU, where g =
det(VxG), resulting in a modified system of conservation

e Discretize the output functional J = / / f(U, u,t)dS dt
laws defined on the reference domain

in a solver-consistent manner, i.e., the Spatlal integration uses
the shape functions of the DG—ALE scheme and the temporal

oUx integration is performed with the same DIRK scheme

+Vx Fx(Ux, VxUx)=0
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FULLY-DISCRETE ADJOINT METHOD

e The fully-discrete adjoint equations corresponding to the e The adjoint states, A(™ and ngm, can be used to reconstruct
global numerical discretization of the equations are the gradient of an output functional with respect to parame-
ters, a crucial requirement for gradient-based optimization
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j=i u optimization, this will be done for the objective function as

well as all the constraint equations

CONCLUSIONS

e A high-order DG-DIRK discretization of general conservation laws with a mapping-based ALE formulation for deforming domains

o A fully-discrete adjoint method for computing gradients of output functionals and constraints in optimization problems

e Framework demonstrated on the computation of energetically optimal motions of a 2D airfoil in a flow field with constraints

ENERGETICALLY OPTIMAL TRAJECTORY B ENERGETICALLY OPTIMAL FLAPPING

e Consider the trajectory optimization problem
minimize

T
/ F.-ovdSdt
h(t), 0(t) 0 JT

subject to  h(0) = h'(0) =W (T) =0, h(T) =1
#(0) =60(0)=6(T)=6'(T)=0

e h(t),0(t) discretized via cubic splines with 5 knots
e Optimization cases:

(—) h(t) = 5(1 —cos(nt/T)), O(t) = 0
(—) h(t) = 2(1 — cos(mt/T)) fixed,
(—) h(t), 6(t) variable

0(t) variable
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FUTURE RESEARCH

Vorticity field at three time instances for the three trajectories

UNSTEADY PDE-CONSTRAINED OPTIMIZATION USING HIGH-ORDER D G-FEM
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Consider the trajectory optimization problem
minimize

3T
/ / F -vdSdt
h(t), 6(t) 2T JT
3T
subject to / / F,dSdt=20
2T JT

AR (1) = BB (¢t + nT), %) (t) = 0% (¢t + nT)

h(t),6(t) discretized via amplitude/phase of 5 Fourier modes
Optimization cases:

(—) h(t) = — cos(0.47t/T), O(t) = 0
(—) h(t) = —cos(0.47t/T) fixed,
(—) h(t), 6(t) variable
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Vorticity field at three time instances for the three trajectories

Application of the method to real-world 3D problems

Extension of the method to multiphysics problems, such as FSI

Extension of the method to chaotic problems, such as LES flows, where
care must be taken to ensure the sensitivities are well-defined

Incorporation of an adaptive model reduction technology to further
reduce the cost of unsteady optimization




